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Abstract—Structures subjected to severe cyclic loading may fail due to low cycle fatigue. During
the latter part of the fatigue life the crack growth rate may increase due to the occurence of crack
growth from static failure modes. e.g. void growth, The present investigation attempts to predict
the combined crack growth by means of nonlinear FE methods. The case studied is an axially loaded
flat plate with embedded, nearly circular cracks growing under nominal cyclic plasticity, as test data
for this case has been obtained previously. The fatigue part of the crack growth is determined by
using the computed cyclic J-integral and the static mode crack growth from ductile tearing is
determined from computations accounting for void nucleation/growth/coalescence by means of a
modified Gurson-Tvergaard model. Comparison with the test results shows acceptable cor-
respondence. ¢ 1997 Elsevier Science Ltd.

INTRODUCTION

In typical fatigue loading, the structural life consists mainly of loading corresponding to
high cycle fatigue. In some structures the operational loads may contain cycles in the fully
plastic regime, i.e. low cycle fatigue. Additionally, structures designed according to high
cycle fatigue criteria may be subjected to accidental loads or extreme environmental loads
(waves, earthquakes), leading to low cycle fatigne damage (Skallerud er «/., 1995). Due to
the intense loading in cyclic plasticity, the high maximum tensile loads may also lead to
ductile tearing crack growth when the crack has reached a certain size. Most research in
the past addresses these topics separately. In the present investigation cyclic elastic-plastic
crack growth is analysed by means of nonlinear FE methods. The case analysed is an axially
loaded plate with embedded, approximately circular cracks, as some test data have been
obtained previously (Skallerud, 1992a). The fatigue crack growth is predicted by extension
of the J-integral (Rice, 1968) to cyclic loading, AJ (Dowling and Begley, 1976) followed by
application of this parameter in a fatigue crack growth model. As the crack geometry is
simple, solution from an analytical study is also utilised for comparison. The ductile tearing
18 predicted from the Gurson-Tvergaard model (denoted G-T model subsequently), i.e. a
porous material model representative for ductile damage (Gurson, 1977 ; Tvergaard, 1981,
1982). A refined failure criterion by Zhang and Niemi (1995a), based on a void coalescence
mechanism, has been used in the fitting of the damage parameters. All numerical simulations
were carried out with the ABAQUS software and the UMAT subroutine facility is employed
for the implementation of the G-T model with the refined failure criterion (Zhang, 1995b).

Although experimentally determined crack growth curves for fatigue and tearing
(separately) have been presented in the literature for different materials and cracked com-
ponents, at present purely numerically determined crack growth curves are being suc-
cessfully computed by means of micromechanical models (Xia and Shih, 1995). Hence, the
potential of using micromechanical damage models in numerical analysis is approaching a
firm basis. A numerical approach is beneficial in order to account for geometry effects on
crack growth. The present investigation follows this line of method.

In the following, first some semi-empirical fatigue crack growth models and the micro-
mechanical model are discussed. The FE formulation and modelling are presented, with

3141



3142 B. Skallerud and Z. L. Zhang

details of the G-T model parameter calibration. Finally, the FE results for the component
with embedded, circular cracks subjected to cyclic plasticity are shown and discussed.

DAMAGE MECHANISMS AND MODELS IN FATIGUE AND DUCTILE TEARING

Fatigue

The intention of this section is not to summarize the large body of work done in fatigue
research, see McEvily (1982) and Tanaka (1989) for excellent reviews. The intention is to
point out some theories and models relevant for the present context.

In small scale yielding conditions the relationship between the J-integral for linear
elastic materials and the Mode I stress intensity factor reads

J.=K}E =K, = JEJ,

E
E = l: 5 l Pes E’ PU}‘ (1)
I —v-

The crack tip opening displacement relates to J as:

J = ma,dy,. )

Here, m is a constraint factor close to 1 in plane stress and approximately 2 in plane strain,
for low hardening materials, presuming that J characterises the crack tip stress—strain field
(HRR field) (Shih, 1981 ; Hutchinson, 1968 ; Rice and Rosengren, 1968).

In cyclic loading under small scale yielding, unloading from a,,,, to o, (Without crack
closure) governs the change in d,, according to the following relationship (Rice, 1967)

5“1, oC K[://E’O'_‘.
Aétip oC (AK)Q/(E/ZO-»)
AK = Kmax - Kmm x (Umax - amin)\//;(;' (3)

The crack tip blunting model is one way of describing fatigue damage. It is based on the
cyclic process of blunting and resharpening of the crack tip (Laird and Smith, 1962;
Neumann 1974). A result from this model is that the crack advance is proportional to Ady,.
The striation mechanism with crack advance in each cycle then leads to the following crack
growth model :

da/dN oc (AK)?. (4)

Detailed studies of structural steel show that this model may be valid for relatively high
crack growth rates. although still under small scale yielding (Roven and Nes, 1991), whereas
a semi-empirical model has to be utilised for lower rates (Paris and Erdogan, 1963):

da/dN = C,(AK)". (5)

n, is typically between 2 and 4, and close to 3 for structural steel. Figure 1(a) illustrates
schematically typical fatigue crack growth rates in log—log axes. For high cyclic loading in
the ligament (due to a large crack or small crack/high nominal load), the small scale yielding
parameter K| is invalidated. Now the J-integral is a possible parameter for describing
control of the crack tip damage process zone. J is derived for a nonlinear elastic (defor-
mation plastic) material (Rice, 1968) and may be written as the sum of an elastic and a
plastic contribution (Shih and Hutchinson, 1976) :
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Fig. 1. (a) Crack growth rate behaviour; (b) AJ determination (significant crack closure); (¢) AJ
determination (insignificant crack closure).
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Although application of J in cyclic loading does not have a theoretical basis as for mon-
otonic loading, it is still a relevant candidate for correlation of fatigue crack growth under
large scale yielding. One could assume that the cyclic plastic crack growth was proportional
to the energy dissipated per cycle at the crack tip. Then the requirement for proportional
straining of the material necessary for the J-integral could be abandoned. This approach
requires a fine FE mesh. However, the link between K and J shown below is convenient in
estimation of fatigue crack growth parameters. Dowling (1978) utilised the connection
between J and the elastic and plastic strain energy in cyclic loading for axially loaded
specimens, where the strain energy in a cycle was taken as the area under the stress—strain
curve starting at (6, &min) and ending at (0., €max)- Lhis approach presumes insignificant
effects of crack closure. Describing the loading branch by a doubled Ramberg-Osgood
curve according to the Masing-hypothesis (Masing, 1926), an estimate for AJ could be
obtained from the area under the loading branch of the curve:

AJ = F, AW.a+F,(a,n)AW ,a (8)
AK, = JEAJ. 9)

The F factors account for finite geometry, crack shape and strain hardening and were
derived in (Shih and Hutchinson, 1976) for monotonic loading. Note that the energies
should account for eventual effects of crack closure, i.e. AJ is effective. Figure 1(b) illustrates
the operational AJ obtained from load—displacement curves with significant crack closure,
whereas Fig. 1(c) depicts a load-displacement (or stress—strain) curve for a specimen
without significant crack closure (e.g. in a cylindrical, axially loaded LCF specimen). By
correlating AK; to the low cycle fatigue crack growth, a linear relationship was obtained in
log-log axes, located in the extrapolated Paris’ region (Dowling and Iyyer, 1987 ; McClung
and Hudak, 1994 ; Joyce et al., 1994) :

da/dN = C,(AK,)" = C,(AK,)". (10)

The definition of AJ is (Tanaka, 1989):

” oA
AJ (AWn, _At-S u)ds

o NN
Jr OX|

x~AJ,+AJ,
AW = mM(a—amm):ds.,
_ 0AW(Ae)
MY P

At = oy —tin- (11)

Equation (11) is only valid for a stabilized material response (Yoon and Saxena, 1991) i.e.
cyclic hardening/softening is saturated. For the steel analysed subsequently this transient
material behaviour is moderate and saturation quite rapid (Skallerud, 1992b). Hence, in
this respect the AJ determination should be acceptable. Note that AJ # Jy,u— Jmin, bUL 8
obtained by developing eqn (11)
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This means that the computed J,,,, Jmin by means of eqn (6) or the virtual crack extension
method implemented in ABAQUS is not feasible. The only implementation of eqn (11)
known to the authors has been performed by Lambert ef al. (1988), where the results
computed corresponded well with AJ values both calculated from the load—displacement
curves in tests and the numerically determined load—displacement curves, hence according
to the area under the loading part of the load—displacement curve, see Fig. 1(b) and (c). A
way of utilising the results from ABAQUS for AJ determination is presented subsequently.

Considering Fig. 1(a), for a further increase in AK}, the log-linear relationship breaks
down and an increase in crack growth rate develops. This increase may be attributed to static
fracture modes, e.g. from ductile tearing. Previous studies show that for some materials the
interaction between the fatigue mode and static modes is negligible (Kaiser, 1983 Chell,
1984 ; Neale and Priddle, 1988), and the increased crack growth due to ductile tearing may
be simulated by an amplification factor obtained from a monotonic J, curve :

da//dJV = da/dN |faiigue + da//dN Itearing (13)

mat

T,
=da/dN = C;(ASYy"/ (1 - ?'ﬂ) (14)

Tmax dJ, max/ da

Toa  dJpa/da’

By this method the upturn of the da/dN— AK curve, Fig. 1(a), is obtained.

Ductile tearing

Equation (14) is only utilised herein for discussion purposes. Instead, as the damage
process in ductile tearing usually consists of void nucleation/growth/coalescence, a micro-
mechanical model originally proposed by Gurson (1977) and later modified by Tvergaard
(1981) and Tvergaard and Needleman (1984), is employed with some modifications. By
assuming that the matrix material is characterised by a Mises material and the void shape
is kept spherical, using upper bound theory, Gurson derived a plastic potential for a voided
solid that returns to the Mises yield surface for zero void volume fraction :

, 2 3g,0,, ,
®(o,.1.5) = q—_)' +2¢, fcosh <L2 )- 1—(g./)*=0
&2 2
q3=§s:s, s=06—0,l, am=§azl. (15)

Here fis the void volume fraction, & is the matrix material yield stress, ¢, = 1.5and ¢, = 1
are parameters introduced by Tvergaard for better correspondence to FE results, o is the
Cauchy stress tensor, I is the second-order unit tensor.

During loading the void volume fraction increase is governed by :

df = dfnuclealion + d.f;;rowlh
dfgrow[h = (1 —f) dap : I
df;mclealion = Ade® ( 1 6)
where &P is the overall plastic strain tensor and d&P is the equivalent plastic strain increment.

Here a strain controlled nucleation criterion has been applied. The void nucleation par-
ameter 4 may be described by the normal distribution model (Chu and Needleman, 1980):
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The parameters are defined subsequently in the calibration section. By equivalence of
overall and matrix plastic work, the equivalent plastic strain increment controlling matrix
hardening reads

e o def
5P —

(1=

(18)

The overall plastic strain increment is given by the associated flow rule de? = d/.0®/de. The
Gurson model itself is not able to predict the void coalescence. An extra criterion for void
coalescence should be used. To account for this, fis replaced by f* in eqn (15). f* equals f
for f<f. and fi+[(f¥—1)/(fE—fO1(f—f) otherwise. Note that a failure criterion is
inherent, namely the void volume fraction at coalescence, f., and it is determined by
numerical simulations of simple tensile tests. Zhang and Niemi (1995a) modified f;, taking
it to be the value of f when a void coalescence criterion, based on Thomason’s localisation
criterion (Thomason, 1989), is fulfilled. Hence, a physical criterion is employed.

Some experimental observations

In the investigation by Skallerud (1992a), the test specimen shown in Fig. 2 was used.
[tis a flat plate buttwelded at midsection. The base material is of type St52-3N, a normalised
CMn structural steel typically applied in the offshore industry. The monotonic and cyclic
stress—strain curves are plotted in Fig. 3. The weld matched the base material. The chemical
compositions of the materials are listed in Table 1.

The testing was carried out in fully reversed axial loading, with the base metal nominal
axial strain as controlling parameter, analogous to LCF testing of cylindrical specimens.
The strain was monitored by means of clip gages with a measurement length of 10 mm.
None of the specimens contained fatigue precracks.

Although the crack initiated and grew differently among the 10 plates tested, the crack
growth rate could be correlated to the nominal strain amplitude as

da/dN = 35600¢°°a (19)

Ina = N35600¢2°° +Ina,. 20)

An initial crack size of 0.1 mm is employed in eqn (19). Two of the specimens developed
cracks growing from a weld root inclusion as an embedded, approximately circular crack.
The micrographs in Fig. 4 show one of the crack surfaces, with clear striation patterns.
Here the nominal strain amplitude was 1.3% and the number of cycles to failure was 80.
The insets show the fracture surfaces at &~ 1 and 7 mm, respectively. For the smallest crack,
no sign of dimples representing necking between voids is observed, whereas for the large
crack dimples clearly are visible. Figure 5 shows the comparison between the measured
crack growth for this specimen and that predicted by eqn (19).

In the following it is attempted to predict da/dN from fatigue and ductile tearing
contributions by means of computed values of fatigue and tearing crack growth according
to eqn (13). The specimen described above is used in all simulations, as it has a well defined
crack shape and growth behaviour.

FE FORMULATION AND MODELLING

Large deformations are accounted for in all analyses, i.e. an updated Lagrangian
type formulation combined with the algorithm presented by Hughes and Winget (1980)
accounting for large rigid body rotations (Hibbitt ez al., 1992). The strain measure is based
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Fig. 4. Striation pattern and crack surface details.
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Fig. 3. Monotonic and cyclic stress—strain curve.
Table 1. Chemical composition (% wt) and mechanical properties data for base and weld metal
C Si Mn P S Cu Ni
Base metal 0.19 0.39 1.49 0.013 0.007 0.01 0.03
Weld metal 0.08 0.35 0.91 0.014 0.007 0.01 0.01
Cr Mo AY Ti Nb Al H

Base metal 0.02 0.01 0.01 0.001 0.002 0.035 0.00009
Weld metal 0.03 0.01 0.02 0.02 0.003 0.002 0.00005

crack depth

1oge

100

Number of cycles
Fig. 5. Crack depth (a) vs cycles.

on the rate of deformation, and is combined with the Jaumann rate of the Kirchoff stress
yielding a stress increment without rigid body contributions for an infinitesimal time incre-
ment, i.e. T = C*: D, (D = symmad(6x/01)/0x, W = antisymmd(0x/01)/0x,2 = Tt — Wt +1tW,
1 = | dx/0X | @, X is the current position of a material point, X is the reference position).
In the tearing analyses the large deformations are important due to the intense straining
at the crack tip and the simultaneous void nucleation/growth/coalescence. Utilising the G-
T model in the FE analyses, hence accounting for the voids, the tangent stiffness at an
integration point provides a vanishing stress carrying capability after void coalescence and
tearing is simulated element by element for increasing external loading. The continuum
expression for the tangent stiffness reads:
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The constitutive equations were implemented via the user material facility in ABAQUS by
means of the backward Euler integration method. A consistent tangent operator was
utilised, hence the quadratic rate of convergence in the Newton method solving the global
equilibrium was preserved. Confer Zhang and Niemi (1995b) and Zhang (1995b) for details.

In the cyclic analyses a bi-linear kinematic hardening model as implemented in
ABAQUS is applied. The continuum expression reads:

35— ) (50— o
bubyt 1y by DI )

202 (14 2
*t36

Here o} represents the deviatoric part of the back stress tensor and G is the shear modulus.
o, = 360 MPa and / = 2200 MPa were applied as an approximate description of the cyclic
stress—strain behaviour. This represents closing of the hysteresis loops and contains no
transient material behaviour. Modelling of the transient behaviour is given in (Skallerud,
1992b). Therefore, the AJ approach is acceptable. Although the ABAQUS theory manual
points out caution in using this material model for strains larger than 25% due to plasticity
induced anisotropy, the cyclic loading analysed herein did not lead to such high strain levels
except at the crack tip. Here, however, the stress—strain results were not utilised in the
analysis of fatigue crack growth.

Initially some plane strain analyses were carried out. These did not give acceptable
results (too much strain concentration in the ligament, and too high constraint at the crack
tip leading to large overprediction of ductile tearing). Therefore, it was decided to run
three-dimensional analyses of the component. Due to symmetries, only 1/8 of the specimen
was modelled. The crack sizes analysed subsequently are a=c¢ =3, 5, 6, 7 and 8 mm,
respectively. The local mesh arrangements in the crack tip region for the five models are
exactly the same. Figure 6 illustrates the FE mesh for ¢ = ¢ = 5 mm. The size of the brick
elements at the crack tip, and in the prospective crack growth direction, was 0.033 mm. In
most cases 20 noded solid elements with reduced integration (2 x 2 x 2 Gauss points) were
applied. In the cyclic analyses the same mesh, but with eight-noded solid elements instead,
was used due to computer time consumption. In the cyclic analyses uniaxial gap elements
were used at the crack surface. Hence, the numerical results accounted for crack opening
and closure, and these effects could be monitored. The analyses were run in displacement
control, with a boundary displacement amplitude corresponding to the nominal strain
amplitude in the test.

£ = ——
S ST
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Fig. 6. FE mesh for ¢ = 5 mm, 1/8 of specimen.

Calibration of the Gurson model parameters

One important aspect in the application of the G-T model is the establishment of the
material parameters. Recently a methodology for determining the damage parameters has
been proposed by Zhang (1995a) in which the parameters have been classified into four
categories, the constitutive parameters (¢, and ¢,), the hardening parameters (true stress—
strain curve), the initial material parameters (f; and the nucleation parameters) and the
critical parameter (f.). The constitutive parameters and hardening parameters are usually
not the great concern of an application. In our case, g, = 1.25 and ¢, = 1.0 suggested by
Koplik and Needleman (1988) were used. The great concern is how to determine or select
the initial as well as critical parameters. By using the methodology which is based on
Thomason’s dual dilatational plasticity theory (Thomason, 1989) the initial as well as the
critical parameters can be determined.
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Fig. 7. Experimental and numerical load—displacement curve for tensile test.

In general, there are two families of voids in steel, corresponding to large inclusions
and small carbides, which should be taken into account. The primary voids nucleated from
large inclusions usually are assumed to be present (nucleated) at the beginning of plastic
loading. Its void volume fraction £, can be approximately obtained from the inclusion MnS
by Franklin’s formula (Franklin, 1969) :

0.001
fi =0.054 [S(%) ~ MT(W)} (24)

The chemical compositions of the steel and weld metal investigated in this paper are shown
in Table 1. The calculated void volume fraction of MnS are 0.00034 and 0.00032 for the
steel and its weld metal, respectively. In our FE analyses, the value f; = 0.00033 has been
used.

The secondary voids nucleated from the small carbides during the plastic deformation
are difficult to model accurately. Normally stress or strain controlled nucleation rules can
be used. In this study, the strain-controlled nucleation rule by Chu and Needleman (1980)
is applied, see eqn (17), in which &, is the mean nucleation strain for the small carbides,
sy is the standard deviation and fy is the volume fraction of nucleating particles. In the
literature, the values ¢y = 0.3, s, = 0.1 proposed by Tvergaard and Needleman (1984) have
been widely used and are also used in our analyses. The remaining unknowns f, and f, are
fitted from the tensile tests. In the parameter fitting, several fy values have been tried.
Because a mechanism characterized by void coalescence has been employed, the material
failure is automatically determined for a given fy value. By comparing the numerical and
experimental results, the value of fy = 0.006 which gives best fit to the experimental results
was chosen as the “‘true” volume fraction of the nucleating particles. The critical void
volume fraction f, which is a result of the parameter fitting, corresponding to f = 0.006, is
0.026. The value of f; is not very critical for the analyses, and was chosen as 0.15. These
values have been used in the following analyses. Figure 7 shows the numerical and experi-
mental results for the tensile test.

NUMERICAL SIMULATIONS

Ductile tearing analyses

Five three-dimensional models with (circular) crack size @ = 3, 5, 6, 7 and § mm have
been analyzed with the established material parameters. Figure 6 shows the finite element
mesh for the 5 mm crack. The dimensions of the model are 6030+ 10 mm. The local mesh
arrangement at the crack tip is also presented in Fig. 6. As normal practice for ductile
tearing analyses, uniform square elements have been used. There are 4368 nodes and 808



A study of ductile tearing and fatigue crack 3153

0.20

0.15

0.10

Void volume fraction f

0.05

0.00 = - —
0.00 0.01 0.02 0.0

Global axial strain

Fig. 8. Evolution of void volume fraction in near tip integration point (location 4) for crack sizes
a=3,5,6,7, 8 mm.

20-node elements in the 5 mm crack model. The number of elements and nodes for all crack
models are similar to those in the 5 mm crack model.

The void volume fractions as a function of the nominal strain at the most critical
integration point at crack tip location A4 (largest ligament) for the three models are compared
in Fig. 8. It is interesting to note that for the 3 mm crack model, there is no crack growth
even when the nominal strain is larger than 2%, however, according to the G-T model, the
ductile tearing will start to appear when the nominal strain is about 0.5%. For the 5 mm
crack model the ductile crack growth will start at the nominal strain 1.4%. In other words,
according to the simulations the ductile tearing will begin to contribute to the total crack
growth in the fatigue test when the crack size has reached 5 mm.

Figure 9 shows the ductile crack growth at location A4 (largest ligament) as a function
of the nominal strain for the 5, 6, 7 and 8 mm crack models. In this study, the numerical
crack is defined as the part of material in the crack plane where the loading capacity has
“disappeared”. In the analyses, in order to avoid numerical problems, a small amount of
the loading capacity was remaining even when the crack had advanced. It can be found
that once the crack has initiated, it grows faster in the 6/7/8 mm models than in the 5 mm
model, probably because the a/w value at location A is larger for the 7 mm model than for
the 5 mm. The crack growth for the 6, 7 and 8 mm models at the applied nominal strain
amplitude 1.3 % is about 0.05, 0.15 and 0.45 mm, respectively.

The distribution of the averaged values of f at load levels which gives comparable f
values around the crack front in the first element at the crack tip is shown in Fig. 10(a). It
can be seen that in the 3 and 5 mm crack models, with the boundaries still relatively remote,
the distribution is almost even at the crack front. However, the maximum f appears at

0.35
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£ 020 1
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Q /
m B
o 040 f ;
0.05 | 1
|
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0.000 0.005 0010 0.015 0.020 0.025 0.030

Global strain
Fig. 9. Ductile tearing crack growth for location 4.
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location B in the 6, 7 and 8 mm models. It means that crack growth will be initiated at
location B. However, once the crack growth has started, the crack will grow more at 4 and
less at B. Figure 10(b) indicates the crack growth along the crack front for the 7 mm crack
model at 1.3% nominal strain and for the 5 mm crack model at 2.5% nominal strain.

Cyclic analyses

Figure 11(a) shows one (stable) computed load—displacement loop for the 5 mm crack
specimen. It is observed that globally, no sign of crack closure is detected in this three-
dimensional (3D) model. This complies with test results. Figure 11(b) shows the cor-
responding plot assuming plane strain, exhibiting significant crack closure. The explanation
of the different response is simply the large difference in crack area versus net area, as the
plane strain model has a/w = 0.5 (50% cracked surface) and the 3D model has 7% cracked
surface.

Figure 12 illustrates by curve 1 the evolution of the load in the gap element nearest to
the crack tip (location A in the 3D model) during 1.5 cycle for the 5 mm crack model. The
force is zero as long as the crack is open, then just after unloading, this element makes
contact. During further unloading this element force reduces slightly as the other gap
elements come into contact. At (fictitious) time 1.0 the slope of the nominal load—dis-
placement curve changes from negative to positive as the tensile excursion begins. Almost
immediately the gap forces vanish, i.e. the crack opening load corresponds approximately
to minimum load. This is in accordance with the study by Dowling and lyyer (1987),
showing low crack opening loads for axially loaded specimens tested in cyclic plasticity.
Hence, it is reasonable to take the full loading branch into account when computing J-
integrals (Fig. 1(c)). Curve 2 in Fig. 12 represents the gap element displacement. The
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Fig. 11. (a) Load—displacement behaviour for ¢ = 5 mm, 3D FE model; (b) load—displacement
behaviour for @ = 5 mm, plane strain FE model (a/w = 0.5).

simulations showed that after the first tensile excursion the gap element displacements
saturated to constant values. Figure 12 shows a value of about 0.11 mm for the gap element
nearest to the crack tip. Curve 3 is the boundary displacement history for the specimen.
Figure 13 illustrates the gap element displacements for crack center, intermediate
distance from crack tip and the near tip element (curve 1), located 5, 2.5 and 0.05 mm from
the crack tip location A, respectively. As AJ # J ., — Jmin, the J-values obtained by ABAQUS
during the cyclic loading could not be utilised. However, as the crack opens near the
minimum load, a numerical AJ may be calculated by taking the doubled stress—strain
curve as material model (Masing-hypothesis) and subject the cracked component to 2e,
monotonically. This is analogous to the way the area under the load-displacement curve in
cyclic loading is used in obtaining test result AJ, see Fig. 1(b) and (c) (Dowling, 1978;
Lambert et al., 1988). Using this method the J-integral evolution for the three crack sizes
is plotted in Fig. 14. The x-axis is the fictitious analysis time, a similar evolution is exhibited
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Fig. 12. Gap element behaviour for near tip element at location A.

in terms of nominal strain. Nine locations at the crack tip, each with six contours, were
employed in calculation of J. Figure 14 shows the J-values at points 4 and B and some
contour values for point A4 in order to assess path dependencies. The path dependency is
small (but increasing for increasing crack size). It is interesting to note, however, that the
J-value at point B is larger than at point 4 (largest ligament). For the 3, 5, 6, 7 and 8§ mm
cracks the following AJ values are obtained for point B: 150, 400, 594, 800 and 1100 N
mm ™', respectively.

Fitting the bilinear stress—strain curve to a Ramberg—Osgood curve, and exponent of
5.35 is determined for strains less than 0.03. Applying this curve in an estimation of J for
the 3 mm crack, assuming that the effect of finite geometry is negligible, the following value
is determined for the hysteresis loop governed by strain amplitude 0.013:

N/T 20 T T
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Crack center
~ 10
E
E
o
[
<
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L . -
0 5 10 15

Time (*10**-1)

Fig. 13. History plot of gap deformations at crack centre, intermediate distance from crack tip, and
near crack tip (location 4).
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172 —\V /2, »
AJ=AJ +AJ, = Iz “Acy/ma | +{-|?2nF(n)AW,a ~ 100 Nmm ' (25)
i T

Here the same crack shape factor is assumed in the plastic term also. Neglecting this factor
in the plastic term, AJ ~ 250 N mm~'. The hardening factor F(n) is obtained from Shih
and Hutchinson (1976) assuming plane stress. Note that multiplying the monotonic J,
obtained from ABAQUS, corresponding to a strain amplitude 1.3%, with four, AJ x 4J,
the value 140 N mm™' is obtained. This result is equivalent to replacing Ae, Ag with 2e,,
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Fig. 15. Comparison of crack depth vs no. cycles in simulation and test.

20, in eqn (8). Although the numerically calculated J and estimated J differ, the value
determined from ABAQUS is considered to be acceptable.

Correlation to test data

Determining the crack growth rates in the test for a =3, 5, 6, 7 and 8 mm, utilising
eqn (19), gives the following results : 0.16, 0.26, 0.32, 0.37 and 0.42 mm cycle "', respectively.
As the steel under consideration is a typical structural steel, representative crack growth in
the small scale yielding regime is given as (Barsom, 1971):

da/dN = 3.5-107"*(AK,)’, MPa./m, mcycle . (26)

Extrapolating this curve into the large scale yielding regime, see Fig. 1(a), and employing
the computed AJ values to determine AK), the following fatigue crack growth rates are
obtained from eqn (26) for the five crack sizes: 0.02, 0.09, 0.15, 0.24 and 0.39 mm cycle ™"
The corresponding tearing crack growth at strain amplitude 0.013 for the five cracks are 0
mm, =z 0, 0.05, 0.15 and 0.45 mm, respectively. Hence, the total predicted crack growth
rates are 0.02, 0.09, 0.2, 0.39 and 0.84 mm cycle™' by use of eqn (13), i.e. a significant
underprediction in crack growth rate for the small cracks and reasonable predictions for
a 2 6 mm. Crack depth vs number of cycles is plotted in Fig. 15. For the experimental
curves, two additional initial crack sizes are utilised in eqn (20) for comparison purposes.
From the above results it is observed that the predicted fatigue crack growth is under-
estimated for @ < 5 mm. Therefore, in order to compare results where both fatigue and
tearing mechanisms are operative in the simulations, the numerical analysis results start at
a =5 mm and N = 75, assuming that the crack growth up to this magnitude is predicted
accurately. Due to the underprediction in fatigue crack growth rate for ¢ = 5 mm, the
initial slope of the simulation curve is too gentle, but in the last part the curves correspond
quite well.

DISCUSSION

Material parameters and characteristic length
As we have mentioned, the determination of the parameters involved in the G-T model
is an important, but difficult task. No recommendation for the parameter selection is
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available in the literature. By using the methodology proposed by Zhang (1995a), the
unknowns and non-uniqueness of the parameters have been reduced. However, there are
still unknowns, especially ¢, and sy, which should depend on the material in question.
Nucleation is one of the most difficult problems in the modelling of ductile fracture. Only
by close experimental monitoring of the ductile fracture process, can the parameters be
accurately determined. Nevertheless, the damage parameters established in this study are
in the range of the parameters used in the literature (Sun ez al., 1989 ; Brocks, 1995).

Another open problem in the application of the damage model is the so-called charac-
teristic length. In other words, the material failure usually does not occur when a point in
the material has reached the critical value, but when the damage in a volume of material
has reached the critical value. In our case, the characteristic length is related to mesh size
at the crack tip. It should be mentioned that studying the crack size effect on the ductile
tearing is one of our main purposes, rather than accurate prediction of the J; curves.
Different values of the crack growth can be expected if different mesh sizes are used.
However, the observation of the crack size effect as well as the three-dimensional effects
should be valid.

Crack growth predictions

The maximum J-values (at strain amplitude 0.013) corresponding to crack size 3, 5
and 6 mm are: less than the numerical crack initiation value (J,), approximately at the
initiation value, and above, respectively. This corresponds to the micrographs of the fracture
surface showing a slight tendency of ductile damage for ¢ = 5 mm and a significant ductile
damage development for ¢ = 7 mm.

During the cyclic loading, for a < 5 mm the fatigue damage mechanism dominates the
crack growth. The predicted fatigue crack growth is under-estimated by a factor of § and
2.5 for a = 3 and 5 mm, respectively. There are several sources for this deviation from the
observed behaviour. First, the crack grows through the weld material from the weld root
and outwards. The analyses assume homogeneous material in the weld, the real material
will exhibit spatial variations both with respect to fatigue crack growth characteristics and
stress—strain behaviour. Second, in the AJ calculation the cyclic stress—strain behaviour has
been simplified by a bi-linear stress-—strain curve. The crack growth parameters in the Paris
equation (eqn (26)) for the steel will also be an approximation, as it is a mean curve, with
typical scatter of +2 on crack growth. Thirdly, the way of calculating AJ is a simplified
method utilising a purely monotonic analysis with the Masing-hypothesis in material
behaviour and strain range as input. Although this approach seems to be reasonable, the
test for its accuracy is obtained if an implementation of eqn (11) is carried out. Finally, the
finite element analyses show that the crack opens near minimum load. Therefore, it is
assumed that the full loading branch is contributing to crack growth, i.e. negligible crack
closure. This result corresponds to a stationary crack. For the real situation (a growing
crack), some actual crack closure variation affecting the fatigue crack growth may, however,
be operative, but due to the intense compressive loading, this effect is probably small.

Interaction effects

For @ > 5 mm the ductile tearing starts to contribute to the crack growth. In our
analyses it is assumed that this growth can be determined by analysing the virgin material
monotonically and utilising the G-T based constitutive model. Considering a nucleated
void in the material in front of the advancing crack tip, the assumption of a spherical shape
may be invalidated. A void, initially spherical, may change into an oblate shape during the
large compressive loading applied in the analyses. The oblate void could actually approach
a penny shaped defect if the compressive loading is large enough. When this void is reloaded
in tension, the material around the void is more intensively strained compared to a spherical
void. How this may increase damage growth during the load cycling is a topic for future
investigations.

In summary, the predicted crack growth by adding up fatigue contributions and ductile
crack growth contributions is considered to be in acceptable accordance to the test result.
But there is a need for more numerical work on the feasibility of the AJ determination, and
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experimental work on other materials in order to reveal possible damage interaction that
invalidates a simple linear sum of fatigue and tearing crack growth rate.
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